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Anomalous height fluctuation width in crossover from random to coherent surface growths
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We study the anomalous behavior of the height fluctuation width in the crossover from random to coherent
growth of a surface for a stochastic model. In the model, random numbers are assigned on perimeter sites of
a surface, representing pinning strengths of disordered media. At each time step the surface is advanced at the
site having a minimum pinning strength in a random subset of the system rather than at a global minimum. The
subset is composed of a randomly selected site andlitsl) neighbors. The height fluctuation width
W2(L;l) exhibits nonmonotonic behavior withand has a minimum &t*. It is found numerically that*
scales ag* ~L%%° and the height fluctuation width at that minimubv?(L;l*), scales as~L%%in 1+1
dimensions. It is also found that the subset dizfl) is the characteristic size of the crossover from the
random surface growth in the Kardar-Parisi-Zhang universality to the coherent surface growth in the directed
percolation universalityfS1063-651X97)01903-X

PACS numbg(s): 68.35.Fx, 05.40+j, 64.60.Ht

The field of nonequilibrium surface growth has been ofthe exclusion rule with an avalanche rule: At each time step,
interest for the theoretical classification of universality anda patrticle is deposited at a randomly selected site and an
also for applications to various physical phenomena such asvalanche may occur successively at nearest-neighbor sites
crystal growth, molecular-beam epitaxy, vapor depositionas long as the height difference between nearest neighbors
biological evolution[1]. An interesting feature of nonequi- Ah>1. Then it was argued that this model also belongs to
librium surface growth is the nontrivial scaling behavior of the KPZ universality clasfb], but the model requires a rela-
the height fluctuation width2], i.e., tively large system size to see its asymptotic behavior. Let us
call the former model the RSOB model and the latter
model the RSO$ model. The surface growth in the KPZ
universality class is called the random surface growth.

Physical properties of the growing surface in disordered
whereh; is the height of sité on a substrate. Hete L, and Media are different from those of the thermal KPZ equation,
d’ denote the mean height, system size, and substrate dimefd- (2)- In order to account for the effect of disorder in
sion, respectively. The angular brackets stand for the statig2orous media, quenched noi@, which depends on posi-
tical average. The scaling function behavesf@g—const ~ tion x and heighth, replaces thermal noise in E(). Then
for x>1, andf(x)~x28 for x<1 with 8= a/z. The expo- the quenched KPZQKP2) equation is written as
nents«, B, and z are called the roughness exponent, the

WZ(L,t)=<%Ei (h; —h_)2> ~L29f(t/LY), (1)

growth exponent, and the dynamic exponent, respectively. dh(x,t) ) ﬁ 2

The Kardar-Parisi-ZhangKPZ) equation[3] was intro- ot PVt + Z[Vh(x’t)] b, @
duced to account for the effect of sideways growth, which is
written as where  the noise  satisfies (5(x,h))=0  and

\ (n(x,h) p(x’,h")y=2D 8% (x—x")8(h—h"). Stochastic
— 2 N 2 models associated with the QKPZ equation have been intro-
PVhxt+ Z[Vh(x’t)] T, @) duced[7,8]. The models show that the surface of the QKPZ
equation in 31 dimensions belongs to the directed percola-
where 7(xt), the thermal noise, is assumed to be whitetion (DP) universality. The roughness exponesj in the
noise, (7n(x,t))=0; and {(#(x) n(x’,t’)}zZD&“'(x QKPZ equation is given by the ratio of the correlation length
—x")8(t—t") with noise strengtiD. Many stochastic mod- exponents in the perpendicular and parallel directionsnd
els in the KPZ universality class have been introduged »; of directed percolating clusters, which is
Among them is the restricted solid-on-soli®@SOS model,  a4=v, /¥=0.63. On the other hand, recently Sneppen in-
which was introduced by Kim and Kosterlif2], satisfying troduced a stochastic model in which the surface grows co-
the scaling relationw;+z,=2. The subscript means that the herently[5]. In that model, random numbers, representing
exponents are fothermalnoise. In the RSOS model, a par- the disorder of porous media, are assigned to each perimeter
ticle is deposited at a randomly selected site as long as thate of the surface. The surface is advanced at the site having
height differenceAh between nearest-neighbor columns re-a global minimum among the random numbers. The ava-
mains as\h=<1 even after deposition; otherwise, the particlelanche rule is then applied successively to nearest-neighbor
is excluded from deposition. On the other hand, one maypites as long assh>1. Random numbers at the columns
modify the dynamic rule of the RSOS model by replacingwith increased heights are updated by new ones. The

Jh(x,t)
at
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Sneppen model also belongs to the DP universality class and 0.70
the roughness exponentdg~0.63 in 14+1 dimensiong9].
The surface growth of the Sneppen model is called coherent
surface growth.

The coherent surface-growth model is closely related to
the self-organized evolution model for biological systems

[10]. In the evolution model, one considers random numbers 1
assigned in a one-dimensional array, the numbers represent-

ing the fitness of each species. The mutation of species is

described in the model by updating random numbers. The

updating occurs at the site having a global minimum random 0.70

number and its two nearest neighbors, and the random num-
bers at those sites are replaced by new ones at each time.
Then as times go on, relatively small random numbers dis-
appear by the updating process and the distribution of ran-
dom numbers exhibits a self-organized critical behavior. On
the other hand, one may think of the situation where biologi- I
cal evolution is not motivated in a globally optimized man-
ner, but it may be driven by optimization within tHmite . . .
region out of the entire system. This is analogous to the case ' 'C: 1- Schematic representation of the stochastic rule. The ar-
that the spin-glass system is in a metastable state within rgwed sites are randomly selected sites. The dark squares denote the

finite relaxation time rather than in a globally stable state sites of minimum random number within the subset of 3ize.
. L . . gl Y The white squares denote the sites updated by avalanches. The sub-
Motivated by this idea, in this paper we introduce a surfac

&et could overlap with the subsequélawer) one.
growth model in disordered media, where surface growth P que )

occurs at the site having the minimum random number in a
subsetof the entire system rather than having the global
minimum random number. We think that this model might
be relevant to the case where the relaxation of surface gro

in disordered media is not fast enough to spread into th?ni
whole system, so that the surface growth is driven not in 3

globally optimized manner, but in a locally optimized man- asL increases. It is found that the location of the minimum

ner. * 1 059 . . . ;
To be specific, the model we consider in this paper isscales ad L and the helgl:]_ngggluctuatlon width at this

defined as follows. First, we consider a one-dimensional fla inimum scales as\*(L;1*)~ , Which are shown in
. : ’ . igs. 3 and 4. The estimated valuesl bfand W?(L;I*) for

substrate with system size Random numbers are assigned di . .

; . ifferent system sizes are tabulated in Table I.
on each site, the numbers representing energy bar(fiers
nes$ in the evolution model or pinning forces in the surface
growth model by Sneppen. Second, we select a site randomly 250
and consider the subset composed=ePr + 1 elements, the
randomly selected site, and its 2eighbor sites within dis- | a
tancer. It is worthwhile to note that the subset is regarded as 200
a random sample because the site in the middle of the subset
was selected at random. The subset is formed instanta-
neously and its territory might overlap with a subsequent one
as shown in Fig. 1. Next, the surface is advanced at the site g
having a minimum random number among thelements in /
the subset. The avalanche process is followed successively at © u
its neighboring sites to keep the RSOS conditidn<1, and =
it may spread out over the boundary of the subset. Finally, 50 -
the random numbers at the sites with increased height are r ] -/'//
updated with new ones. The dynamic rule of the model is ok t 2 s i L
depicted in Fig. 1. Wheh=1, this model corresponds to the
RSOSB model in the KPZ universality class, whereas when 50 . . . ' . .
=L, it corresponds to the SneppBnmodel in the DP uni- - ' ' ' ' ' ' '
versality class. Accordingly, one may see the crossover be- -0.2 0.0 0.2 0.4 06 0.8 1.0 1.2
havior from the KPZ limit to the DP limit with increasing I/L
l.

Since the roughness exponent=1/2 in the KPZ limit is FIG. 2. Plot of the surface height fluctuation widt&(L;l)
smaller than the onexq~0.63 in the DP limit, one may versus subset siZéL, rescaled by system sizein a steady state.
expect at a glance that the height fluctuation widthThe numerical data are for system sites64, 128, 256, 512, 1024,
WZ(L;1) in a steady state increases monotonically with in-and 2048, from bottom to top.

0.75 0.56

creasingl. However, we found numerically the following
nomalous behavidV?(L;l) decreases with increasimgor
alll and increases for large as shown in Fig. 2. The
nimum of W2(L;l) becomes steeper and its location
/L, which was rescaled by system sizeapproaches zero
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TABLE I. Numerical values of the locatioi* and the height
fluctuation widthW?(L;1*) at the minimum for different system
sizes.

10°F . L I* WA(L;1*)

64 11 5.9
128 19 11.2
256 27 20.3
512 39 35.8

1024 59 62.5
2048 95 110.0

slope = 0.59

values ofL as shown in Fig. 5. The slopes are measured to
be ~—0.2 for large system sizds=1024 and 2048. Based
on this measurement, W?(L;l) is written as
Ll Lol W2(L:1)~1"92 for smalll. This result is contrary to the
101 102 103 one based on the coarse-graining scaling argument
W2(L;1)~ (L/1)22t12%, which exhibits an increasing behav-
L ior of W2 with increasingl. On the other hand, whehis
large enough, surface updating is initiated mainly at the site
FIG. 3. Double-logarithmic plot of the estimated locatidnof ~ having the global minimum random number of the entire
the minimum versus system site The data are fot =64, 128,  system. When the site of the global minimum is selected,
256, 512, 1024, and 2048. which occurs with probability/L, the surface becomes cor-
related by the Sneppen dynamics; however, when the site of
the global minimum is not selected, the correlation formed
0The anomalous behavior may be attributed to two efty Sneppen’s dynamics is relaxed. Thus, wHeis large
fects: the random effect for smdlland the coherent effect enough so that the contribution by the Sneppen dynamics is

for largel. For smalll, the surface grows by random depo- sufficiently dominant, one may write the dominant term of
sition with avalanches and belongs to the KPZ universalitythe averaged  height fluctuation width as

Thus the height fluctuation width depends on the system siz@/2(L:1)~ (I/L)L?%. That is because the statistical average
asW?(L;1)~ L2, with 2a;=1, however, it would also de- was taken over the quantity of the square of mean-height
pend on the subset size In order to find thel-dependent  deviation in Eq.(1). Combining the two asymptotic behav-

behavior ofW?(L;l) on a phenomenological level, we plot jors obtained on a phenomenological level, the height fluc-
W2(L;1) versusl in double-logarithmic scales for several tuation width is written as

: 4
il 10%
[ 10°} slope =— 0.2
10% ¢ i /
= e
I . = i e, -
= : _ T o102k -~ . L_2048
> N E .- L=1024
10" =\ = : L stz
slope = 0.85 i .. e =256
1015_ EER-m L=128
L E —n mn
L=64
10°F
SN S 0 A R
10’ 102 10° 10 10, 0 10 102
L I

FIG. 4. Double-logarithmic plot of the surface height fluctuation ~ FIG. 5. Double-logarithmic plot 0f?(L;1) versusl for various

width at the minimum positiokV?(L;1*) versus system side. The  system sizes. The data seem to be on straight lines with slope
data are folL =64, 128, 256, 512, 1024, and 2048. -0.2.
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FIG. 6. Double-logarithmic plot ofv?(L;|) versusL for typical 102102107 10° 10" 10% 10% 10*
subset sizes=5 and 41.
r/l
[ FIG. 7. Double-logarithmic plot o€(r)/12%a versusr/| for sub-
W2(L;1)~1792 + E) L126 4) set sized =5, 11, 21, 41, 61, 81, and 141. The data are for system
sizeL=2048.

The two terms exhibit competing behavior with respect to

[, and this yields the anomalous behavior. Taking the deriva- - . .
tive with respect tal, the locationl* of the minimum is smaller value than &, in Fig. 6 and the numerical estima-

obtained as* ~L%62 which is close to the numerical mea- 107 Of the roughness exponent is likely to ber-1 [Eq.

; i 201 1)1 2«
surement* ~ L% We also examine the size-dependent be. (@] for fixed|. The behavior of¥*(L;1)~L " occurs when

havior of the height fluctuation width at the minimum by | also increases ds !nqrea;es. In the thermodynamic limit
plugging I* into Eq. (4) and obtain thatW2(L:|*)~1 %88 L_—_>00, the characteristic siz€ goes to |nf|n|t_y, o] tha’_[ for
This result is also close to the numerical measuremenffn'tm’the roughness of the overalllsurface 1S det_ermmed by
W2(L:;1*)~L%85 The numerical estimations for* and a random effect and the surface is described in the KPZ

W2(L:1*) are better explained by minimizing the formula unyversahty class. Next, we examine the height-height corre-
lation function

2ay
201 1) —~ 2a, _ |1 2aq-
W(L,l) (|2aq)|‘ t+ L q; (5) 104§
however, the derivation of this formula is not clear. 10°F
In order to understand the physical meaning of the char- 102 __

acteristic subset size*, we plot W?(L;l) versusL up to
L =2048 in double-logarithmic scales for typical subset sizes 10"
=5 and 41 in Fig. 6. The sizZe=5 corresponds to the case

where it is smaller thai* (L) for all system size& used in = 1¢0° s

Fig. 6. However, the size df=41 corresponds to the case *—-

where it is smaller thad* (L) in part for L=1024 and = 10 4

2048, close td*(L) for L=512, but larger thah* (L) in N; Y T

part forL=64 and 128. For the cade=5, all data are on a 10 3

straight line, whereas for the cake 41, forming a straight 10° k

line breaks down for smaller system siZes-64 and 128. I
Figure 6 suggests thét (L) be the characteristic subset size 104k

such that whed<I*(L), the roughness of the overall sur- F

face is determined by a random effect, whereas when N sl sl sl il
I>1*(L), it is done by a coherent effect. Accordingly, the 1071071071010 107 10" 10° 10° 107 10
subset sizé* has the meanings of not only the location of t

the minimum of the anomalous height fluctuation width, but

also the critical size at which the crossover from random to  F|G. 8. Double-logarithmic plot oW2(L,t;1) versus timet for
coherent surface growths occurs. Also note that even for theystem size. =1024. The data are for subset sizes3, 5, 9, 17,
casel >1*(L), the surface height fluctuation width does not 33, 65, 129, 257, and 513. Inset: four distinct regimes are observed
behave asW?(L;l)~L2%. The roughness exponent has afor the case of.=1024 and = 65.
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FIG. 9. Semilogarithmic plot of B, versusl for L=1024. The |
data seem to be on a straight line with slope 0.1 up to the charac-
teristic subset siz&*. FIG. 10. Double-logarithmic plot of, versusl for L=1024.
The data seem to be on a straight line with slope 0.37.

1

C(r;L.h= [g [h(x+r)—h(x)]?), (6)  the Sneppen dynamics as shown in Fig. 8. The second re-
gime terminates at,. In Fig. 10 the threshold times are
likely to scale ag,~1%%"for | <I*. The values of the height
C(r)/12%a versus ¢/1) in double-logarithmic scales for sev- fluctuzation Widthoagtzthe threshol_d va_lmg are likely to §cale
eral values ofl and L=2048. In Fig. 7 the data are well a_SWZ(L'tZ;I)NI s 8s _shown.m Fig. 11. In the third re-
collapsed forr/I<1, while they are not collapsed for 9iMe the rando_m effect is domlngnt and the coherence of the
r/I>1. Accordingly, the coherent surface growth occursSUrface formed in the second regime becomes decorrelated in
within the range of <I: however, the roughness of the over- this regime. As the subset size is smaller, the third regime is
all surface is determined by the criterion depending ordfominantand the growth expones becomes much closer
[*(L) andL above.

It would be interesting to study thedependent behavior 3
of dynamic properties of the height fluctuation width 107
W2(L,t;1). The study is based on numerical simulations for a :
fixed system size, say,=1024. As shown in the inset of
Fig. 8, there exist four distinct regimes f&/?(L,t;1). In the ”
first regime,W?(L,t;|) increases according to the Poisson 10°F
distribution andW?(L,t;1)~t?f1 with 28,=1. The first re- i
gime terminates at;, which is independent of the subset size
[. In the second regime, the surface becomes correlated by a 1
coherent effect, which is caused by the selection of the mini- & 107
mum random number in the selected subset; however, de- :
correlation also occurs simultaneously by a random effect,
which is caused by the selection of the random subset. Since 0
the value of the dynamic exponenj=0.63 for the Sneppen 107 ¢
dynamics is smaller than the omg=1.5 for the KPZ dynam- :
ics, the coherent effect spreads faster than the random effect
at early times. Thus the growth exponemgxin the second 1 .
regime has a value closer to the Sneppen valge=2; 10 10° "1"01 102 10?
however, the value is a little smaller due to decorrelation by
the random effect. The growth exponem@.2depends on the |
subset sizé as tabulated in Table Il. Based on the measure-
ment in Fig. 9, the growth exponent is likely to depend on  FIG. 11. Double-logarithmic plot ofW,? versus | for
| as 28,~(0.1)In for I<I*; however, forl>1*, the value L =1024. The data seem to be on a straight line with slope 0.92 up
of the growth exponent is expected to be close to the one ab the characteristic subset sie

which is defined for fixedL and |. In Fig. 7 we plot

slope = 0.92
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| . FIG. 13. Plot of the random number distribution after saturation

_ o for L=256. The data are fdr=1, 3, 5, 27, 129, and 256, respec-
FIG. 12. Semilogarithmic plot of 25 versusdl for L=1024. The  {jyely.

line has the slope-0.37 and the data are fo+3, 5, 9, 17, 33, 65,
and 129, respectively.

Vergeles[11]. In that study, surface growth occurs at site
on a substrate with the probabilitg(x)~e~ 9%/T where

to the KPZ value; conversely, as the subset size is larger, th@(x) is a random pinning strength of sieand is also up-
decorrelation effect becomes much weaker, so that thdated with height advance.is the temperature. It was found
growth exponentB; becomes smaller. It is likely that that the surface of the model reduces to the one of the
2B3~(—0.37)Ir, as shown in Fig. 12. The third regime Sneppen dynamics whefi=0; however, forT#0, it re-
terminates at;. The numerical values of; for different ~ duces to the one of the KPZ universality class. The tempera-
sizes ofl are too close for small to be measured numeri- ture T plays the role of the tuning parameter for the cross-
cally. over behavior. However, since the tuning parameter is in the

We also investigated thedependent behavior of the dis- form of an exponential function, it is hard to see the finite-
tribution of random numbers after reaching a saturated stat&ize-dependent behavior of the crossover, which is very sen-
As shown in Fig. 13, the distribution is flat fd=1 and  Sitive to tuning the parameter as we studied in this paper.
exhibits a critical behavior for=L. Between the two limits, Nevertheless, the anomalous behavior may barely be ob-
the distributions look like a rounded step function. It would served in the plot ofV(L;T) versusL for different tempera-
be interesting to note that all distribution functions for dif- tures[Fig. 1(b) in Ref.[11]], where the curves ofV(L,T)
ferentl pass [hrough a Speciﬁc value of the random numbegross each other. However, the crossover behavior was not
B., which corresponds to the threshold of the self-organizedtoted in Ref[11]. _ .
critical state[9]. The value ofB, is equal to - P.=0.462, In summary, we have introduced a stochastic model for
whereP, is the directed percolation threshold. surface growth, which is a generalization of the restricted

Recently, the crossover behavior from the random surfacgolid-on-solid model in the KPZ universality class and the
growth to the coherent surface growth was considered byneppen model in the directed percolation limit, and have
investigated the crossover of the two limits. Deposition oc-
curs at the site having a minimum of random numbers within

TABLE II. N ical estimation for th | f th th . . .
umerical estimation for the values of the grow R finite subset rather than of an entire system. The subset is

exponents, the threshold times, and the height fluctuation widths fi

: - composed ofl elements, a randomly selected site, and its
various subset sizds | —1 neighbors. Changing the subset diz¢he height fluc-
| 28, Logy(t,) Log,o(W2) 285 tuation width exhibits anomalous behavior with a minimum.
The anomalous behavior is due to the two competing effects:
3 1.12 -0.10 0.20 0.66 the random effect for smallland the coherent effect for large
5 1.16 -0.10 0.20 0.64 I. The minimum of the surface height fluctuation width, lo-
9 1.23 0.00 0.33 0.60  cated al* ~L%% is scaled a®W?(L;1*)~L%®in 1+1 di-
17 1.31 0.10 0.55 0.50 mensions. The characteristic subset $tZd.) has the mean-
33 1.40 0.20 0.80 0.38 ing that for I<I*(L), the surface grows randomly and
65 1.59 0.31 1.12 0.28 belongs to the KPZ universality class, whereas for
129 1.68 0.42 1.60 0.17 I>1*(L), surface grows coherently. The dynamic properties
257 1.78 0.60 1.80 0.17 of the crossover have also been investigated. In the early

stage of growth, the surface becomes correlated according to
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