
PHYSICAL REVIEW E MARCH 1997VOLUME 55, NUMBER 3
Anomalous height fluctuation width in crossover from random to coherent surface growths
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Department of Physics and Center for Advanced Materials and Devices, Kon-Kuk University, Seoul 143-701, Korea

~Received 4 November 1996!

We study the anomalous behavior of the height fluctuation width in the crossover from random to coherent
growth of a surface for a stochastic model. In the model, random numbers are assigned on perimeter sites of
a surface, representing pinning strengths of disordered media. At each time step the surface is advanced at the
site having a minimum pinning strength in a random subset of the system rather than at a global minimum. The
subset is composed of a randomly selected site and its (l21) neighbors. The height fluctuation width
W2(L; l ) exhibits nonmonotonic behavior withl and has a minimum atl * . It is found numerically thatl *
scales asl *;L0.59 and the height fluctuation width at that minimum,W2(L; l * ), scales as;L0.85 in 111
dimensions. It is also found that the subset sizel * (L) is the characteristic size of the crossover from the
random surface growth in the Kardar-Parisi-Zhang universality to the coherent surface growth in the directed
percolation universality.@S1063-651X~97!01903-X#

PACS number~s!: 68.35.Fx, 05.40.1j, 64.60.Ht
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The field of nonequilibrium surface growth has been
interest for the theoretical classification of universality a
also for applications to various physical phenomena suc
crystal growth, molecular-beam epitaxy, vapor depositi
biological evolution@1#. An interesting feature of nonequ
librium surface growth is the nontrivial scaling behavior
the height fluctuation width@2#, i.e.,

W2~L,t !5K 1

Ld8
(
i

~hi2h̄!2L ;L2a f ~ t/Lz!, ~1!

wherehi is the height of sitei on a substrate. Hereh̄, L, and
d8 denote the mean height, system size, and substrate di
sion, respectively. The angular brackets stand for the st
tical average. The scaling function behaves asf (x)→const
for x@1, and f (x);x2b for x!1 with b5a/z. The expo-
nentsa, b, and z are called the roughness exponent, t
growth exponent, and the dynamic exponent, respective

The Kardar-Parisi-Zhang~KPZ! equation@3# was intro-
duced to account for the effect of sideways growth, which
written as

]h~x,t !

]t
5n¹2h~x,t !1

l

2
@¹h~x,t !#21h~x,t !, ~2!

where h(x,t), the thermal noise, is assumed to be wh
noise, ^h(x,t)&50; and ^h(x,t)h(x8,t8)&52Ddd8(x
2x8)d(t2t8) with noise strengthD. Many stochastic mod-
els in the KPZ universality class have been introduced@1#.
Among them is the restricted solid-on-solid~RSOS! model,
which was introduced by Kim and Kosterlitz@4#, satisfying
the scaling relationa t1zt52. The subscript means that th
exponents are forthermalnoise. In the RSOS model, a pa
ticle is deposited at a randomly selected site as long as
height differenceDh between nearest-neighbor columns
mains asDh<1 even after deposition; otherwise, the partic
is excluded from deposition. On the other hand, one m
modify the dynamic rule of the RSOS model by replaci
551063-651X/97/55~3!/2362~7!/$10.00
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the exclusion rule with an avalanche rule: At each time st
a particle is deposited at a randomly selected site and
avalanche may occur successively at nearest-neighbor
as long as the height difference between nearest neigh
Dh.1. Then it was argued that this model also belongs
the KPZ universality class@5#, but the model requires a rela
tively large system size to see its asymptotic behavior. Le
call the former model the RSOSA model and the latter
model the RSOSB model. The surface growth in the KP
universality class is called the random surface growth.

Physical properties of the growing surface in disorde
media are different from those of the thermal KPZ equati
Eq. ~2!. In order to account for the effect of disorder
porous media, quenched noise@6#, which depends on posi
tion x and heighth, replaces thermal noise in Eq.~2!. Then
the quenched KPZ~QKPZ! equation is written as

]h~x,t !

]t
5n¹2h~x,t !1

l

2
@¹h~x,t !#21h~x,h!, ~3!

where the noise satisfies ^h(x,h)&50 and

^h(x,h)h(x8,h8)&52Ddd8(x2x8)d(h2h8). Stochastic
models associated with the QKPZ equation have been in
duced@7,8#. The models show that the surface of the QKP
equation in 111 dimensions belongs to the directed perco
tion ~DP! universality. The roughness exponentaq in the
QKPZ equation is given by the ratio of the correlation leng
exponents in the perpendicular and parallel directionsn' and
n i of directed percolating clusters, which
aq5n' /n i'0.63. On the other hand, recently Sneppen
troduced a stochastic model in which the surface grows
herently @5#. In that model, random numbers, representi
the disorder of porous media, are assigned to each perim
site of the surface. The surface is advanced at the site ha
a global minimum among the random numbers. The a
lanche rule is then applied successively to nearest-neigh
sites as long asDh.1. Random numbers at the column
with increased heights are updated by new ones.
2362 © 1997 The American Physical Society
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55 2363ANOMALOUS HEIGHT FLUCTUATION WIDTH IN . . .
Sneppen model also belongs to the DP universality class
the roughness exponent isas'0.63 in 111 dimensions@9#.
The surface growth of the Sneppen model is called cohe
surface growth.

The coherent surface-growth model is closely related
the self-organized evolution model for biological syste
@10#. In the evolution model, one considers random numb
assigned in a one-dimensional array, the numbers repre
ing the fitness of each species. The mutation of specie
described in the model by updating random numbers.
updating occurs at the site having a global minimum rand
number and its two nearest neighbors, and the random n
bers at those sites are replaced by new ones at each
Then as times go on, relatively small random numbers
appear by the updating process and the distribution of
dom numbers exhibits a self-organized critical behavior.
the other hand, one may think of the situation where biolo
cal evolution is not motivated in a globally optimized ma
ner, but it may be driven by optimization within thefinite
region out of the entire system. This is analogous to the c
that the spin-glass system is in a metastable state with
finite relaxation time rather than in a globally stable sta
Motivated by this idea, in this paper we introduce a surfa
growth model in disordered media, where surface grow
occurs at the site having the minimum random number i
subsetof the entire system rather than having the glo
minimum random number. We think that this model mig
be relevant to the case where the relaxation of surface gro
in disordered media is not fast enough to spread into
whole system, so that the surface growth is driven not i
globally optimized manner, but in a locally optimized ma
ner.

To be specific, the model we consider in this paper
defined as follows. First, we consider a one-dimensional
substrate with system sizeL. Random numbers are assign
on each site, the numbers representing energy barriers~fit-
ness! in the evolution model or pinning forces in the surfa
growth model by Sneppen. Second, we select a site rando
and consider the subset composed ofl[2r11 elements, the
randomly selected site, and its 2r neighbor sites within dis-
tancer . It is worthwhile to note that the subset is regarded
a random sample because the site in the middle of the su
was selected at random. The subset is formed insta
neously and its territory might overlap with a subsequent
as shown in Fig. 1. Next, the surface is advanced at the
having a minimum random number among thel elements in
the subset. The avalanche process is followed successive
its neighboring sites to keep the RSOS conditionDh<1, and
it may spread out over the boundary of the subset. Fina
the random numbers at the sites with increased height
updated with new ones. The dynamic rule of the mode
depicted in Fig. 1. Whenl51, this model corresponds to th
RSOSB model in the KPZ universality class, whereas wh
l5L, it corresponds to the SneppenB model in the DP uni-
versality class. Accordingly, one may see the crossover
havior from the KPZ limit to the DP limit with increasing
l .

Since the roughness exponenta t51/2 in the KPZ limit is
smaller than the oneaq'0.63 in the DP limit, one may
expect at a glance that the height fluctuation wid
W2(L; l ) in a steady state increases monotonically with
nd
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creasingl . However, we found numerically the following
anomalous behaviorW2(L; l ) decreases with increasingl for
small l and increases for largel as shown in Fig. 2. The
minimum of W2(L; l ) becomes steeper and its locatio
l * /L, which was rescaled by system sizeL, approaches zero
asL increases. It is found that the location of the minimu
scales asl *;L0.59 and the height fluctuation width at thi
minimum scales asW2(L; l * );L0.85, which are shown in
Figs. 3 and 4. The estimated values ofl * andW2(L; l * ) for
different system sizes are tabulated in Table I.

FIG. 1. Schematic representation of the stochastic rule. The
rowed sites are randomly selected sites. The dark squares deno
sites of minimum random number within the subset of sizel55.
The white squares denote the sites updated by avalanches. The
set could overlap with the subsequent~lower! one.

FIG. 2. Plot of the surface height fluctuation widthsW2(L; l )
versus subset sizel /L, rescaled by system sizeL in a steady state.
The numerical data are for system sizesL564, 128, 256, 512, 1024
and 2048, from bottom to top.
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2364 55K. PARK AND B. KAHNG
ôThe anomalous behavior may be attributed to two
fects: the random effect for smalll and the coherent effec
for large l . For smalll , the surface grows by random dep
sition with avalanches and belongs to the KPZ universal
Thus the height fluctuation width depends on the system
asW2(L; l );L2a t, with 2a t51, however, it would also de
pend on the subset sizel . In order to find thel -dependent
behavior ofW2(L; l ) on a phenomenological level, we plo
W2(L; l ) versus l in double-logarithmic scales for sever

FIG. 3. Double-logarithmic plot of the estimated locationl * of
the minimum versus system sizeL. The data are forL564, 128,
256, 512, 1024, and 2048.

FIG. 4. Double-logarithmic plot of the surface height fluctuati
width at the minimum positionW2(L; l * ) versus system sizeL. The
data are forL564, 128, 256, 512, 1024, and 2048.
f-

.
ze

values ofL as shown in Fig. 5. The slopes are measured
be'20.2 for large system sizesL51024 and 2048. Based
on this measurement, W2(L; l ) is written as
W2(L; l ); l20.2L for small l . This result is contrary to the
one based on the coarse-graining scaling argum
W2(L; l );(L/ l )2a tl 2aq, which exhibits an increasing behav
ior of W2 with increasingl . On the other hand, whenl is
large enough, surface updating is initiated mainly at the
having the global minimum random number of the ent
system. When the site of the global minimum is select
which occurs with probabilityl /L, the surface becomes co
related by the Sneppen dynamics; however, when the sit
the global minimum is not selected, the correlation form
by Sneppen’s dynamics is relaxed. Thus, whenl is large
enough so that the contribution by the Sneppen dynamic
sufficiently dominant, one may write the dominant term
the averaged height fluctuation width as
W2(L; l );( l /L)L2aq. That is because the statistical avera
was taken over the quantity of the square of mean-he
deviation in Eq.~1!. Combining the two asymptotic behav
iors obtained on a phenomenological level, the height fl
tuation width is written as

FIG. 5. Double-logarithmic plot ofW2(L; l ) versusl for various
system sizes. The data seem to be on straight lines with s
20.2.

TABLE I. Numerical values of the locationl * and the height
fluctuation widthW2(L; l * ) at the minimum for different system
sizes.

L l * W2(L; l * )

64 11 5.9
128 19 11.2
256 27 20.3
512 39 35.8
1024 59 62.5
2048 95 110.0
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55 2365ANOMALOUS HEIGHT FLUCTUATION WIDTH IN . . .
W2~L; l !; l20.2L1S lL DL1.26. ~4!

The two terms exhibit competing behavior with respect
l , and this yields the anomalous behavior. Taking the der
tive with respect tol , the locationl * of the minimum is
obtained asl *;L0.62, which is close to the numerical mea
surementl *;L0.59. We also examine the size-dependent b
havior of the height fluctuation width at the minimum b
plugging l * into Eq. ~4! and obtain thatW2(L; l * );L0.88.
This result is also close to the numerical measurem
W2(L; l * );L0.85. The numerical estimations forl * and
W2(L; l * ) are better explained by minimizing the formula

W2~L; l !;S l 2a t

l 2aqDL2a t1S lL DL2aq; ~5!

however, the derivation of this formula is not clear.
In order to understand the physical meaning of the ch

acteristic subset sizel * , we plotW2(L; l ) versusL up to
L52048 in double-logarithmic scales for typical subset si
l55 and 41 in Fig. 6. The sizel55 corresponds to the cas
where it is smaller thanl * (L) for all system sizesL used in
Fig. 6. However, the size ofl541 corresponds to the cas
where it is smaller thanl * (L) in part for L51024 and
2048, close tol * (L) for L5512, but larger thanl * (L) in
part for L564 and 128. For the casel55, all data are on a
straight line, whereas for the casel541, forming a straight
line breaks down for smaller system sizesL564 and 128.
Figure 6 suggests thatl * (L) be the characteristic subset si
such that whenl, l * (L), the roughness of the overall su
face is determined by a random effect, whereas w
l. l * (L), it is done by a coherent effect. Accordingly, th
subset sizel * has the meanings of not only the location
the minimum of the anomalous height fluctuation width, b
also the critical size at which the crossover from random
coherent surface growths occurs. Also note that even for
casel. l * (L), the surface height fluctuation width does n
behave asW2(L; l );L2aq. The roughness exponent has

FIG. 6. Double-logarithmic plot ofW2(L; l ) versusL for typical
subset sizesl55 and 41.
-

-

nt

r-

s

n

t
o
e
t

smaller value than 2aq in Fig. 6 and the numerical estima
tion of the roughness exponent is likely to be 2aq21 @Eq.
~4!# for fixed l . The behavior ofW2(L; l );L2aq occurs when
l also increases asL increases. In the thermodynamic lim
L→`, the characteristic sizel * goes to infinity, so that for
finite l , the roughness of the overall surface is determined
a random effect and the surface is described in the K
universality class. Next, we examine the height-height co
lation function

FIG. 7. Double-logarithmic plot ofC(r )/ l 2aq versusr / l for sub-
set sizesl55, 11, 21, 41, 61, 81, and 141. The data are for syst
sizeL52048.

FIG. 8. Double-logarithmic plot ofW2(L,t; l ) versus timet for
system sizeL51024. The data are for subset sizesl53, 5, 9, 17,
33, 65, 129, 257, and 513. Inset: four distinct regimes are obse
for the case ofL51024 andl565.
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C~r ;L,l ![K 1L(x @h~x1r !2h~x!#2L , ~6!

which is defined for fixedL and l . In Fig. 7 we plot
C(r )/ l 2aq versus (r / l ) in double-logarithmic scales for sev
eral values ofl and L52048. In Fig. 7 the data are we
collapsed for r / l,1, while they are not collapsed fo
r / l.1. Accordingly, the coherent surface growth occu
within the range ofr, l ; however, the roughness of the ove
all surface is determined by the criterion depending
l * (L) andL above.

It would be interesting to study thel -dependent behavio
of dynamic properties of the height fluctuation wid
W2(L,t; l ). The study is based on numerical simulations fo
fixed system size, say,L51024. As shown in the inset o
Fig. 8, there exist four distinct regimes forW2(L,t; l ). In the
first regime,W2(L,t; l ) increases according to the Poiss
distribution andW2(L,t; l );t2b1 with 2b151. The first re-
gime terminates att1, which is independent of the subset si
l . In the second regime, the surface becomes correlated
coherent effect, which is caused by the selection of the m
mum random number in the selected subset; however,
correlation also occurs simultaneously by a random eff
which is caused by the selection of the random subset. S
the value of the dynamic exponentzs50.63 for the Sneppen
dynamics is smaller than the onezt51.5 for the KPZ dynam-
ics, the coherent effect spreads faster than the random e
at early times. Thus the growth exponent 2b2 in the second
regime has a value closer to the Sneppen value 2bs52;
however, the value is a little smaller due to decorrelation
the random effect. The growth exponent 2b2 depends on the
subset sizel as tabulated in Table II. Based on the measu
ment in Fig. 9, the growth exponent is likely to depend
l as 2b2;(0.1)lnl for l, l * ; however, forl. l * , the value
of the growth exponent is expected to be close to the on

FIG. 9. Semilogarithmic plot of 2b2 versusl for L51024. The
data seem to be on a straight line with slope 0.1 up to the cha
teristic subset sizel * .
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the Sneppen dynamics as shown in Fig. 8. The second
gime terminates att2. In Fig. 10 the threshold times ar
likely to scale ast2; l 0.37 for l, l * . The values of the heigh
fluctuation width at the threshold valuet2 are likely to scale
asW2

2(L,t2 ; l ); l 0.92, as shown in Fig. 11. In the third re
gime, the random effect is dominant and the coherence of
surface formed in the second regime becomes decorrelate
this regime. As the subset size is smaller, the third regim
dominant and the growth exponentb3 becomes much close

c-
FIG. 10. Double-logarithmic plot oft2 versusl for L51024.

The data seem to be on a straight line with slope 0.37.

FIG. 11. Double-logarithmic plot ofW2
2 versus l for

L51024. The data seem to be on a straight line with slope 0.92
to the characteristic subset sizel * .
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55 2367ANOMALOUS HEIGHT FLUCTUATION WIDTH IN . . .
to the KPZ value; conversely, as the subset size is larger
decorrelation effect becomes much weaker, so that
growth exponentb3 becomes smaller. It is likely tha
2b3;(20.37)lnl, as shown in Fig. 12. The third regim
terminates att3. The numerical values oft3 for different
sizes ofl are too close for smalll to be measured numer
cally.

We also investigated thel -dependent behavior of the dis
tribution of random numbers after reaching a saturated s
As shown in Fig. 13, the distribution is flat forl51 and
exhibits a critical behavior forl5L. Between the two limits,
the distributions look like a rounded step function. It wou
be interesting to note that all distribution functions for d
ferent l pass through a specific value of the random num
Bc , which corresponds to the threshold of the self-organi
critical state@9#. The value ofBc is equal to 12Pc50.462,
wherePc is the directed percolation threshold.

Recently, the crossover behavior from the random surf
growth to the coherent surface growth was considered

FIG. 12. Semilogarithmic plot of 2b3 versusl for L51024. The
line has the slope20.37 and the data are forl53, 5, 9, 17, 33, 65,
and 129, respectively.

TABLE II. Numerical estimation for the values of the growt
exponents, the threshold times, and the height fluctuation widths
various subset sizesl .

l 2b2 Log10(t2) Log10(W2
2) 2b3

3 1.12 -0.10 0.20 0.66
5 1.16 -0.10 0.20 0.64
9 1.23 0.00 0.33 0.60
17 1.31 0.10 0.55 0.50
33 1.40 0.20 0.80 0.38
65 1.59 0.31 1.12 0.28
129 1.68 0.42 1.60 0.17
257 1.78 0.60 1.80 0.17
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Vergeles@11#. In that study, surface growth occurs at sitex
on a substrate with the probabilityP(x);e2q(x)/T, where
q(x) is a random pinning strength of sitex and is also up-
dated with height advance.T is the temperature. It was foun
that the surface of the model reduces to the one of
Sneppen dynamics whenT50; however, forTÞ0, it re-
duces to the one of the KPZ universality class. The tempe
ture T plays the role of the tuning parameter for the cro
over behavior. However, since the tuning parameter is in
form of an exponential function, it is hard to see the finit
size-dependent behavior of the crossover, which is very s
sitive to tuning the parameter as we studied in this pap
Nevertheless, the anomalous behavior may barely be
served in the plot ofW(L;T) versusL for different tempera-
tures†Fig. 1~b! in Ref. @11#‡, where the curves ofW(L,T)
cross each other. However, the crossover behavior was
noted in Ref.@11#.

In summary, we have introduced a stochastic model
surface growth, which is a generalization of the restric
solid-on-solid model in the KPZ universality class and t
Sneppen model in the directed percolation limit, and ha
investigated the crossover of the two limits. Deposition o
curs at the site having a minimum of random numbers wit
a finite subset rather than of an entire system. The subs
composed ofl elements, a randomly selected site, and
l21 neighbors. Changing the subset sizel , the height fluc-
tuation width exhibits anomalous behavior with a minimu
The anomalous behavior is due to the two competing effe
the random effect for smalll and the coherent effect for larg
l . The minimum of the surface height fluctuation width, l
cated atl *;L0.59, is scaled asW2(L; l * );L0.85 in 111 di-
mensions. The characteristic subset sizel * (L) has the mean-
ing that for l, l * (L), the surface grows randomly an
belongs to the KPZ universality class, whereas
l. l * (L), surface grows coherently. The dynamic propert
of the crossover have also been investigated. In the e
stage of growth, the surface becomes correlated accordin

FIG. 13. Plot of the random number distribution after saturat
for L5256. The data are forl51, 3, 5, 27, 129, and 256, respe
tively.
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2368 55K. PARK AND B. KAHNG
the Sneppen dynamics, and in the late stage, the surface
relation is relaxed by the random process. The phenome
of the dynamic correlation-decorrelation behavior also
pears in a stochastic model@12# for the flux line dynamics
with transversal and longitudinal fluctuations, which mig
be described by the coupled quenched KPZ equation@13#.
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